
117

Інформатика, обчислювальна техніка та автоматизація

UDC 004.415.2
DOI https://doi.org/10.32838/2663-5941/2021.6/19

Oleshchenko L.M.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Movchan K.О.
Ukrainian Scientific and Research Institute of Special Equipment and Forensic Expertise
of the Security Service of Ukraine

SOFTWARE METHODS OF GENERATING DOCUMENTATION
FOR NETWORK АРІ

During software development and testing, a lot of time is spent analyzing code, domain logic, writing tests
and documentation. Tests and documentation are important artifacts, and if they are high quality, significantly
reduce the time spent by developers on the analysis of domain logic and program code. When developing client-
server software, the quality of documentation for network APIs that provide access to data is important, because
in some cases it is a mechanism by which the interaction between the commands of the client and server part
of the software is organized. Creating and maintaining quality documentation using existing methods is time
consuming, so the problem of optimizing and finding new methods to create documentation for the API is very
important. The practical value of the research results obtained in this work is that the proposed method of
creating documentation for network APIs allows to spend less time creating documentation, significantly reduces
the likelihood of errors in the documentation caused by the human factor. The article analyzes the standards for
creating documentation for software and substantiates the relevance of the problem for the API standard, formed
requirements for documentation, analyzed the existing methods of creating documentation, identified their main
advantages and disadvantages and compliance with the requirements. The implementation of the method of
creating documentation based on tests is presented, its main advantages and disadvantages are revealed. Features
of testing of a method and comparison of its efficiency in comparison with other methods are also considered.

Key words: software methods, documentation, API, tests, OpenAPI documentation.

Problem statement. The most important
requirement for any technical documentation is
its relevance. In the case of software development
used cascade model this requirement is very easy to
meet. But today few people use this model, instead
prefer flexible models, which are quite dynamically
changing software requirements. In this case, the
documentation needs to be updated as dynamically
as the software changes. This problem is especially
acute for API documentation. In the vast majority
of cases, separate commands work on the client and
server part – sometimes they are territorially far from
each other and do not have the opportunity to interact
with each other. That is why documentation is a
mechanism by which the interaction between these
teams is organized, and its relevance and quality is an
important factor that affects the speed of development
and quality of the final product.

An individual employee can create and maintain
API documentation. An employee will distribute
this documentation in the form of files or publish
it on the website. This approach has a number of
significant shortcomings in terms of the human
factor and resource consumption. A person can

forget something, write incorrectly, etc. Once the
code has changed, the documentation is out of date.
Developers are faced with outdated and erroneous
API documentation very often, which takes extra
time, which ultimately affects the cost of products.
Thus, the urgency means the elimination of the
"human factor". Documentation should be updated
automatically or semi-automatically with changes to
the API, and the ability to forget to make changes to
the documentation should be kept to a minimum.

The next requirement for documentation is its
interactivity. This means that we must provide a
specific user interface that not only describes the API
in a readable form, but also allows to execute requests
to the server side. This is important because usually
API users who are the developers of the client side,
before writing the code, still make requests to the
server part to either check the API’s performance or
see how the API behaves in situations not described
in the documentation. With a graphical interface,
we eliminate the need for developers to use third-
party software such as Postman for such purposes.
Also, if manual testers are involved in the software
development process, they will be able to test the

Том 32 (71) № 6 2021118

Вчені записки ТНУ імені В.І. Вернадського. Серія: Технічні науки

server part separately and it will be easier for them to
“find the extreme” (client or server part) if the program
does not meet the requirements, because testers using
interactive documentation will be able to check the
correct operation of the server part independently.
Another advantage of interactivity is that they actually
eliminate situations where the documentation does
not fully describe possible answers or error codes,
because in this case, without much effort, API users
will be able to check such situations themselves.

Related research. The following software
methods are most often used to create and maintain
documentation for the REST API [1-10]:

– creating documentation using tools for a
specific programming language / framework;

– writing documentation manually;
– creation of documentation with the help of

third-party utilities;
– creation of documentation based on tests.
The main goal of the article is to create software

methods that allows to optimize and automate the
process of creating documentation for the network API.

An overview of existing software methods.
Currently, the most commonly used application
programming interfaces are GraphQL, JSON RPC,
SOAP and REST API.

GraphQL is a standard for declaring the structure
and methods of obtaining data or syntax, which
describes how user can read data from the server [1].

GraphQL has three main characteristics:
– allows the client to specify exactly what data

he needs;
– facilitates aggregation of data from several

sources;
– uses a type system to describe data.
This approach, in addition to flexibility, reduces

the number of requests and the amount of data at

the transport level. The GraphQL API is based on
three main building blocks: schemas, queries, and
resolvers. GraphQL provides the following types of
operations: request (data reading), mutation (data
recording) or subscription (continuous data reading)
[2]. Any of these operations is simply a string that
must be compiled according to the GraphQL query
language specification. Once such an operation
comes to the server from the client program, it can
be interpreted using the entire GraphQL schema and
provide the data required by the client application.
GraphQL can work with any high-level network
protocol (most often using HTTP) and with any data
format (usually using JSON).

The advantage of using GraphQL is declarativeness.
Also, the advantages include strong and clear typing,
no problems with versioning. Another important
aspect of GraphQL is its hierarchical nature.
GraphQL is built on the relationship between objects,
which simplifies the formation of queries, where the
RESTful service may need a multiple query system
“request / response” or a complex merge operation
in SQL [3]. The main disadvantage is considered to
be the complexity of implementation on the server
side. Typically, this is why GraphQL is used as an
additional layer between the client and web services.
In this case, web services do not use GraphQL, but
provide access to data using the REST API. The task
of automating and optimizing the process of creating
documentation is irrelevant, because the above-
mentioned GraphQL-scheme is documentation for
users of network АРІ [4].

JSON-RPC is a remote procedure call protocol
that uses JSON as the data format. This protocol is
very similar to XML-RPC, its specification defines
several types of data and rules for their processing [5].
It is designed as a simple, flexible and understandable

Fig. 1. GraphQL example in microservice architecture [1]

119

Інформатика, обчислювальна техніка та автоматизація

standard. JSON-RPC is based on sending requests
to a server that implements a remote protocol. All
transmitted data are requests serialized in JSON.
A query is a call to a specific method provided by
a remote system. It must contain three mandatory
components:

– “method” is a line with the name of the method;
– “params” – data transmitted to the method as

parameters;
– “id” – a value of any type used for matching

the request to the answer.
The server must return a response to each request

received. The answer should contain the following
properties:

– “result” – data returned by the method. If an
error occurred during execution of the method, this
property must be set to null;

– “error” – error code in case of error during
execution method, otherwise null;

– “id” is the same value as in the query to which
it belongs reply.

Notifications have been introduced for situations
where no response is required. Notifications differ from
the request by the absence of “id”. The main advantage of
JSON-RPC is its simplicity and intuitiveness. Often, when
developing APIs, programmers who know nothing about
standards themselves design interfaces with a similar
query and response structure. JSON-RPC is well suited
for web services with a small amount of functionality and
data types. However, the lack of caching and versioning
mechanisms, the lack of a clear specification make this
standard unsuitable for large-scale web services. The
JSON-RPC standard is very simple, so it is a simple task
to generate documentation for APIs that use this standard.
In particular, all that the documentation should contain is
a list of methods, parameters, answers and error codes.
Implementations of this standard for different platforms
cope well with this task. In particular, it is JSON-RPC.
NET for the .NET platform, go / net / rpc for GoLang,
php-json-rpc for PHP [6].

SOAP is a protocol for exchanging structured
messages in distributed computing systems [7].
For SOAP, there is no difference between calling a
procedure and answering a call, it simply defines the
message format as an XML document.

The message may contain a call to the procedure,
a response to it, a request to perform some other
action. The SOAP specification does not use message
content analysis, it only specifies its standard for
its design. SOAP is based on the XML language
and extends one of the application layer protocols –
HTTP, FTP, SMTP, etc. As a rule, HTTP is most often
used. A SOAP message is an XML document that

consists of three main elements: an envelope (SOAP
Envelope), a header (SOAP Header), and a body
(SOAP Body).

Fig. 2. Messaging between client
and server using SOAP [7]

REST is an approach to the architecture of
network protocols that provide access to information
resources [8; 9]. It was described and popularized
by Roy Fielding, one of the creators of the HTTP
protocol. Fielding developed REST in parallel with
HTTP 1.1 based on the previous version 1.0 [10].
REST has several architectural limitations. One of the
limitations is the client-server architecture. This type
of architecture requires a division of responsibilities
between the components that store and update data
(server) and those components that display data on the
user interface and respond to actions with this interface
(client). This separation allows the components to
work independently. The next limitation is that the
interaction between the server and the client does not
have a state, ie each request contains all the necessary
information for its processing, and does not rely on
the fact that the server knows something from the
previous request.

An additional limitation of the REST style is that
systems written in this style must support caching,
ie the data transmitted by the server must contain
information about whether they can be cached and, if
so, for how long. This allows to increase performance
while avoiding unnecessary queries, but also reduces
the reliability of the system due to the fact that the data
in the cache may be outdated. REST API is a set of
URIs, HTTP calls to these URIs, and a large number
of resource views in JSON or XML format, many of
which will contain cross-references. Addressing is
based on covering resources with unique identifiers.
Restrictions on interface uniformity are partially
implemented through combinations URI and HTTP
verbs and their use according to standards and
conventions. Resources must be nouns, and action on
a resource is a verb. The URI should always refer to
the resource, not the action.

Том 32 (71) № 6 2021120

Вчені записки ТНУ імені В.І. Вернадського. Серія: Технічні науки

Each service resource must have at least one
URI that identifies it. URIs should have a simple
hierarchical structure to facilitate understanding of
the API, and as a consequence, its usability. The
REST API documentation should include a set of all
resources, their identifiers and views, as well as a set
of URIs and HTTP verbs for accessing resources,
authorization information, and possible error and
response codes. The REST API specification itself does
not provide any automatic mechanisms for creating
documentation, as is the case when using GraphQL
using a schema, or in SOAP using WSDL. At the
same time, the documentation for the REST API is an
important artifact for the client part, and the process
of its creation and maintenance can be optimized by
analyzing the requirements and methods in detail.

The proposed software method. The test-based
method is based on generating documentation when
running functional tests. The result is a markdown
file or a set of HTML and JS files. With the system
of continuous integration, it is easy to configure the
automatic download of these files to the server, which
will allow each member of the team to easily view the
documentation in the browser. The main advantage
of this method is that it almost completely ensures
the relevance of the documentation. After all, with the
addition of tests, changes are automatically made to
the documentation. The file that results from the tests
determines whether the GUI will be interactive.

If it is a swagger file, we can install any graphics
client that can work with the OpenAPI standard.
Otherwise, it will not be possible to execute API
requests using documentation. The SpringRestDocs
library, which is an implementation of this method,
generates documentation in its own format and does
not provide users with interactivity, which is its
significant disadvantage. Since the documentation

is based on tests, this method requires time to write
them. At the same time, API access points are usually
covered by functional tests, and under such conditions
this method does not require additional time to create
and maintain documentation.

This method does not completely minimize the
human factor, because we need to make changes to the
templates every time, and this can be easily forgotten.
Also, the process of setting up SpringRestDocs is quite
complex and cumbersome, but this can be explained
by the complexity of the Spring ecosystem. The
main disadvantage of SpringRestDocs is the lack of
interactivity in the documentation. The documentation
generated by the library is shown in Fig. 4:

Although API users will be able to see a list of
available resources and methods by following the link,
they will still be forced to use third-party applications
to begin developing the client part. It should also
be noted that an additional reason for this is that
SpringRestDocs does not know how to generate the
code of the client part, only snippet in the specified
format. Another disadvantage is the inability to specify
the authorization principle for the API. There are
currently several ways to authorize in the REST API.
These include BasicAuth, BearerAuth, ApiKeyAuth,
OpenID and OAuth2. If we use any of them in tests,
we will have to duplicate the queries for each of the
tests. All these shortcomings are eliminated by using
the OpenAPI standard. The OpenAPI specification,
originally known as Swagger, is a specification of
machine-readable files with interfaces for describing,
creating, using, and visualizing REST web services.
The principle of using this specification in this
method is that instead of using snippets, templates
and end files, we must first generate a machine-
readable Swagger file, and then convert this file into
human-readable documentation. This can result in a

Fig. 3. A typical resource and a set of URIs access [10]

121

Інформатика, обчислювальна техніка та автоматизація

PDF, HTML, etc. file. The final HTML file contains
javascript code that allows to log in to the API and
send requests to the server directly in the browser. Its
appearance for the user in the browser (Fig. 5):

This method does not require manual editing of
templates, but it will not be possible to change this
template at the same time. The OpenAPI specification
also supports all common authentication methods.
All we have to do is add a securitySchemes section
to the Swagger file. In this case, our method should
not be responsible for graphical visualization of
documentation. The result of his work is a Swagger file.
The programmers will choose the way of visualization,

and when the Swagger file will be generated, because it
can be done in several ways. In this case, in the system
of continuous integration, we have the opportunity
to check the percentage of coverage by tests. After
successfully running the tests using the same system of
continuous integration, the file is sent to a server that
stores such files and visualizes them. The role of the
server can be played by the project itself. In the case
of a microservice architecture, we can create a separate
service that will do this.

The principle of this method is to add a new handler
that implements a special interface to the process of
generating snippets, which later create templates,

Fig. 4. Documentation generated in SpringRestDocs

Fig. 5. OpenAPI documentation

Том 32 (71) № 6 2021122

Вчені записки ТНУ імені В.І. Вернадського. Серія: Технічні науки

and then generate the result as a file in ePub, PDF or
HTML, depending on the configuration. The library
implements functionalities, such as adding links, adding
descriptions for input and output parameters, input
headers, and so on. But the current implementation
has a number of significant drawbacks. The biggest
drawback is that the final documentation is static
rather than interactive. There are also no mechanisms
to specify the method of authorization, which leads to
duplication of code in the tests. All these shortcomings
are eliminated by the new principle of operation of the
method. In particular, instead of generating snippets, a
Swagger file will be generated, which complies with the
OpenAPI specification, in which these shortcomings
are taken into account and eliminated.

Conclusions and future work. In this
research existing software solutions for generating

documentation for network АРІ are analyzed.
Requirements for the developed software are
formed and defined. The REST API documentation
generation method is currently implemented in the
SpringRestDocs library, which is part of the Spring
ecosystem.

The software implementation of the proposed
method was covered by automated tests written
using the PHPUnit library. The total percentage of
code coverage by tests reaches 65%. The efficiency
of the method in comparison with other methods
and the existing implementation of the method on
the basis of tests are analyzed. The proposed method
provides documentation interactivity compared to
Spring Rest Docs and requires 25% less time than the
method of creating documentation tools for a specific
framework.

References:
1. Learn GraphQL. URL: https://graphql.org/learn
2. GraphQL Core Concepts Tutorial. URL: https://www.howtographql.com /basics/2-core-concepts/.
3. GraphQL. URL: https://meline.lviv.ua/development/other/graphql/
4. Wieruch, R. The Road to Graphql: Your Journey to Master Pragmatic Graphql in JavaScript with React.Js

and Node.Js. New York : Independently published, 2018. 314 p.
5. JSON-RPC 2.0 Specification. URL: https://www.jsonrpc.org/specification.
6. Implementations – JSON-RPC. URL: https://www.jsonrpc.org/archive_json-rpc.org/implementations.html.
7. SOAP Version 1.2 Part 0: Primer (Second Edition). URL: https://www.w3.org/TR/2007/REC-soap12-

part0-20070427
8. WSDL Web Services Description Language. URL: https://www.guru99.com/wsdl-web-services-

description-language.html/
9. Architectural Styles and the Design of Network-based Software Architectures. URL: https://www.ics.uci.

edu/~fielding/pubs/ dissertation/top.htm
10. History of REST APIs. URL: https://www.mobapi.com/history-of-rest-apis.

Олещенко Л.М., Мовчан К.О. ПРОГРАМНІ МЕТОДИ ГЕНЕРУВАННЯ ДОКУМЕНТАЦІЇ
ДЛЯ МЕРЕЖЕВИХ ПРИКЛАДНИХ ПРОГРАМНИХ ІНТЕРФЕЙСІВ

Основною проблемою розроблення та тестування програмного забезпечення є витрачання великого
об’єму часу на аналіз коду, доменної логіки, написання тестів та створення документації. Якісні тести та
документація суттєво зменшують часові витрати розробників на аналіз доменної логіки та програмного
коду. При розробленні програмного забезпечення з клієнт-серверною архітектурою важливою є якість
документації до мережевих API, що надають доступ до даних, оскільки у деяких випадках це є механізмом,
за допомогою якого здійснюється взаємодія між командами клієнтської та серверної частини програмного
забезпечення. Створення та підтримка якісної документації за допомогою наявних методів потребує
багато часу, тому проблема оптимізації та пошуку нових методів для створення документації до API
є актуальною. Практична цінність результатів дослідження, що були отримані в даній роботі, полягає
в тому, що запропонований метод створення документації для мережевих API дозволяє витрачати на
генерування документації менше часу, зменшує ймовірність появи помилок у документації. У статті
проаналізовані існуючі стандарти створення документації для програмного забезпечення та обґрунтована
актуальність проблеми генерування документації для стандарту REST API, сформовані вимоги до
документації, проаналізовані наявні методи створення документації, виявлено їх основні переваги, недоліки
та відповідність сформованим вимогам. Наведено реалізацію методу створення документації на основі
тестів, виявлено її основні переваги та недоліки. Також розглянуті особливості тестування методу та
проведене порівняння його ефективності у порівнянні з іншими методами.

Ключові слова: програмні методи, API, тести, OpenAPI документація.

